
G6A-RISC

General Description

G6A-RISC is an experimental relay based computer for learning and educational purposes. It starts from the knowledge
available from previously built 'modern' relay based computers, but aims at an easier to use instruction set, with fixed
length instructions, constant instruction execution time, and a cleaner hardware architecture.

It is based on the Hardvard architecture with separated program and data memory, with 16 bit wide registers and
addressable memory space. Despite being labeled 'RISC', it is not a load/store architecture, as ALU operations on
memory are allowed.

Binary Instruction Formats

Instruction encodings are fixed 16 bit wide and they are defined by a leading 2 bits 'Mode' field followed by a 3 bits
'Opcode' and a 11 bit operands encoding depending on Mode.

Registers

Type Mode Opcode Operand Encoding Description

P 00 111 immediate (11 bits) Prefix

I 00 op Ri fn - immediate (5 bits) Immediate, Branch

M 01 op Ri Aj s immediate (5 bits) Indexed Memory Addressing

R 10 op Ri/CC fn Rj Rk Three registers

ZP 11 op Ri fn s immediate (5 bits) Direct Memory Addressing

op: 3 bit opcode for the instruction type
fn: 2 bit function code
s : 1 bit field indicating that the instruction is a memory store

Register Alt Name Description

R0 - 16 bit, General Purpose

R1 - 16 bit, General Purpose

R2 - 16 bit, General Purpose

R3 - 16 bit, General Purpose

R4 A0 16 bit, General Purpose, Address Register

R5 A1 16 bit, General Purpose, Address Register

R6 A2, LR 16 bit, General Purpose, Address Register, Link Register

PC A3 16 bit, Program Counter

P - 11 bit, Prefix Register

All registers are 16 bit. ALU operations are 16 bit. 8 bit operations are not supported.
Registers R1 through R6 are general purpose.
Registers R4 through R7 are used in M-type instructions as base address.
Register R6 is used as the link register for the 'brl' instruction.

PC is the Program Counter. It can be accessed as Register 7 with regular instructions. Writing to it
causes program execution to jump to the specified address. Memory reads with PC as the base refer to
program memory rather than data memory.

P is the prefix register. It's written by the prefix instruction and implicitly used by type I
instructions.

There's no explicit Stack Pointer register. Subroutine returns are handled with the link register. Stack
frames can be explicitly created with regular instructions.

Status Register

Assembly Instruction Format

Assembly instructions are described with a 3 character mnemonic following by 2 or 3 operands separated by commas.
By convention the last operand is always the destination one for instructions producing a result.

* The P-Type prefix instruction takes a single 11 bit immediate operand.

* I-Type instructions take 2 operands, an immediate 5 bit value and a destination register. I-type instructions may have a
different meaning, or produce undocumented behaviour, when used with the PC register.

* R-Type instructions take 3 register operands, operand 1 and 2 are source operands, operand 3 is the destination.

* M-Type and ZP-Type instructions take 2 operands, a register operand and an indexed memory operand. Bit 's'
determines whether the operation is a load or a store, this is specified in assembler by the order of operands. The last
operand is the destination. For the M-Type the effective address is computed by adding the given address register to
the 5-bit immediate. For the ZP-Type instructions, the immediate value is used.

* As described later, all instructions with an immeditate field can be prefixed in order to extend the constant range up to
16 bits.

Program example1

Assume a stack based machine where the data stack is pointed by register 'a0'. The stack grows down the memory
addresses.

Multiply using the 'booth' algorithm. End when the multiplicand is zero. The core multiplication uses up to 129 cycles
but will be much faster for small multiplicands

mov 100, a0 // assume 100 is the top of the stack address
mov [a0, 0], r1 // get multiplier
mov [a0, 1], r2 // get multiplicand
mov 0, r0 // set result to zero

.LMulHi
cmp.eq 0, r2 // compare multiplicand with zero
bt+ .LMulDone // branch if zero
sr1 r2, r2 // shift right the multiplicand
sef r1, r3 // set r3 to the multiplier or zero
add r0, r3, r0 // add multiplier (or zero)
sl1 r1, r1 // shift multiplier left
b- .LMulHi // next iteration

.LMulDone
add 1, a0 // increment the data stack pointer
mov r0, [a0, 0] // store the result on top of the stack

Register Description

Status
T C Z

Status Register
I: Interrupt flag
T: Condition flag, result of a compare instruction
C, Z: Carry, Zero flags, result of ALU operations

Compare instructions compare two operands for a specified condition code and set T to 1 if the condition
was met or 0 otherwise. C and Z flags are updated acordingly.

Most ALU arithmetic and logical instructions set C and Z according to the result. Additionally, the Z
flag is copied to T. For example, the 'add' instruction will set C to 1 if there was a carry, and both Z
and T to 1 if the result was zero.

Conditional instructions such as 'set', 'sef' and 'sel' and 'bt+' use the T flag as the condition to
watch.

Program example 2

Similar to the previous example but with a constant execution time

Multiply using the 'booth' algorithm. Constant execution time. The core multiplication uses 112 cycles

mov 100, a0 // assume 100 is the top of the stack address
mov [a0, 0], r1 // get multiplier
mov [a0, 1], r2 // get multiplicand
add 1, a0 // increment stack address
mov 0, r0
mov r0, [a0, 0] // set initial result to zero
mov 16, r0 // initialise counter

.LMulHi
sr1 r2, r2 // shift right the multiplicand
sef r1, r3 // conditionally set r3 to the multiplier
add r3, [a0, 0] // accumulate the result
sl1 r1, r1 // shift multiplier left
sub 1, r0 // decrement counter
bt- .LMulHi // next iteration

.LMulDone
// done, the stack pointer is already incremented
// and the result in the right memory location

Addressing Modes

The following table summarises the available addressing modes. Addressing modes relate with instruction Types

Instruction Encodings

Type Addressing mode Source 1 Source 2 Destination Example

I
Immediate

(1) K
Ri add 4, r0

Branch PC b+ 4 (same as 'add 4, PC')

M
Indexed Memory load (1) mem(Aj+K) Ri add [a0, 4], r0

Indexed Memory store (1) Ri mem(Aj+K) add r0, [a0, 4]

R Register (2) (3) Rj Rk Ri add r1, r2, r0

ZP
Direct Memory load (1) mem(K) Ri add [M], r0

Direct Memory store (1) Ri mem(K) add r0, [M]

(1) Same as destination.

(2) The 'set', 'sef', 'sl1, 'sl4', 'sr1', 'sr4', instructions belonging to the R-Type slightly modify the
default R addressing mode by ignoring one of the source operands.

(3) The 'cmp' and 'cpc' instructions belonging to the R-Type do not set a destination register. Instead,
the destination register field is used to encode the condition code to check, which acts as a third
source operand.

J I M R ZP

type 00 00 01 10 11

s - - 0 1 - 0 1

fn 00 01 10 11 00 01 10 11 Aj 00 01 10 11 00 01 10 11 00 01 10 11

op

000 b - bf bt mov set sef sel mov mov mov set sef sel mov set sef sel mov set sef sel

001 b+ - bf+ bt+ add dad adc dac add add add dad adc dac add dad adc dac add dad adc dac

010 b- - bf- bt- sub rsb sbc rsc sub sub sub rsb sbc rsc sub rsb sbc rsc sub rsb sbc rsc

011 - - - - cmp - cpc - cmp cmp cmp - cpc - cmp - cpc - cmp - cpc -

100 brl - - - and or xor - and and and or xor - and or xor - and or xor -

101 - - - - (1) (1) (1) (1) sr1 sr1 sr1 rr1 sr4 rr4 (1) (1) (1) (1) (1) (1) (1) (1)

110 - - - - (1) (1) (1) (1) sl1 sl1 sl1 rl1 sl4 rl4 (1) (1) (1) (1) (1) (1) (1) (1)

111 pfx -

op: 3 bit opcode for the instruction type
fn: 2 bit function code, for M-Type instructions this is an address register
s : 1 bit field indicating that the instruction is a memory store

(1) instruction slot not available, will cause undefined behaviour.
(-) unused instruction slot, will cause undefined or undocumented behaviour.
(*) The P instruction is a special case of an I instruction with 111 opcode.
(*) J type instructions are I instructions with the PC as the register operand.

Arithmetic operations

The table below summarises all arithmetic instructions by mnemonic. More information on specific instructions is
available on the following sections.

Arithmetic instructions set C and Z condition flags according to the result. Additionally, the Z flag is copied to T. For
example, the 'add' instruction will set C to 1 if there was a carry, and both Z and T to 1 if the result was zero.

Bitwise operations

The table below summarises all arithmetic instructions by mnemonic. More information on specific instructions is
avaialble on the following sections.

Bitwise instructions always clear the C flag, therefore the following instruction 'or 0, Ri' can be used for this effect alone.
Both Z and T are set to true if the result was zero.

Mnemonic Description

add Binary add

dad BCD add

adc Binary add with carry

dac BCD add with carry

sub Subtraction (1)

rsb Reverse Subtraction (1)

sbc Subtraction with borrow (borrow == not carry)

rsc Reverse subtraction with borrow (borrow == not carry)

(1) For I, M and ZP addressing modes 'sub' and 'sbc' subtract the first operand from the second operand.
'rsb' and 'rsc' subtract the second operand from the first operand. The result is stored on the second
operand.

Mnemonic Description

and Bitwise and

or Bitwise or

xor Bitwise xor

Prefixed instructions

Prefixed instructions are assembler emulated instructions of type I or ZP that are made of core instructions preceded by
a prefix instruction. The prefix instruction contains a 'p_imm' 11 bit immediate field that expands the functionality of
core instructions. The prefix instruction extends the immediate field 'imm' of the next instruction by replacing it with the
result of the logical expression: (p_imm << 5) | (imm & 0b11111), thus providing a full 16 bit immediate range to the
prefixed instruction.

The following non-exhaustive list shows several examples of prefix instruction transformations:

Carry-in instructions

A number of instructions take the carry flag to enable wider than native operations. For example, a 32 bit addition can
be performed on two pairs of registers representing 32 bit values, by sequentially executing 'add' on the lower register
operands or memory locations, followed by an 'adc' on the upper operands.

The following carry-in instructions are available:

Carry-in instructions are designed to be executed in combination with carry setting instructions of the same family. The
Status Register flags after carry-in instructions will correctly reflect the result of the combined operation. Therefore it is
safe to use conditional branch or move instructions after them.

Core Instruction Prefixed
Instruction

Description

Immediate

add 257, Ri pfx 8
add 1, Ri

Add with long immediate. The immediate value does not fit in 5
bits, thus a pfx instruction is inserted.

and 255, Ri pfx 8
and 0, Ri

And with long immediate. The immediate value is made by inserting a
pfx instruction.

Memory

add Ri, [Aj, 32] pfx 1
mov Ri, [Aj, 0]

Add Ri to memory location Aj+32. The immediate displacement does
not fit in 5 bit, so a pfx instruction is inserted.

Zero Page

add Ri, [M] pfx M >> 5
add Ri, [M & 0x1f]

Zero page arithmetic. Destination address is beyond the 5 bit
field, so a pfx instruction is inserted.

Relative Branch

bt+ Offset pfx Offset >> 5
b+ Offset & 0x1f

Conditional relative branch forward. PC displacement does not fit
in immediate, so a pfx instruction is inserted.

Branch with Link

brl M pfx M >> 5
brl M & 0x1f

Branch with link. Address does not fit in immediate, so a pfx
instruction is inserted.

adc Rj, Rk, Ri
adc [M], Ri
adc Ri, [M]

Add with carry

dac Rj, Rk, Ri
dac [M], Ri
dac Ri, [M]

Decimal add with carry

sbc Rj, Rk, Ri
sbc [M], Ri
sbc Ri, [M]

Subtract with carry

rsc [M], Ri
rsc Ri, [M] Reverse subtract with carry

cpc Rj, Rk, Cond Compare with carry

Shift and Rotate instructions

Shift instructions perform logical shifts of 1 bit and 4 bit shift amounts on register operands. Rotate instructions take
two register operands and use the second operand to shift in the required lower or upper bits into the first operand to
complete the shift. By carefully combining shift and rotate instructions any shift amount on multi-word data is possible.

Example 1:

1 bit shift right of the contents of the 32 bit register pair R0:R1. Register R0 contains the least significative half:

rr1 r0, r1, r0 // shift r0 right by incorporating the lowest bit of r1 into the highest bit of r0
sr1 r1, r1 // shift r1 right

Example 2:

1 bit shift left of the contents of the 32 bit register pair R0:R1. Register R0 contains the least significative half:

rl1 r1, r0, r1 // shift r1 left by incorporating the highest bit of r0 into the lowest bit of r1
sl1 r0, r0 // shift r0 left

Example 3:

4 bit shift right of the contents of the 32 register pair R0:R1. Register R0 contains the least significative half:

rr4 r0, r1, r0 // shift r0 right by incorporating the lowest nibble of r1 into the highest nibble of r0
sr4 r1, r1 // shift r1 right by 4

Example 4:

4 bit shift left of the contents of the 32 bit register pair R0:R1. Register R0 contains the least significative half:

rl4 r1, r0, r1 // shift r1 left by incorporating the highest nibble of r0 into the lowest nibble of r1
sl4 r0, r0 // shift r0 left

sr1 Rj, Ri Logical shift right, 1 bit

sr4 Rj, Ri Logical shift right, 4 bits

sl1 Rj, Ri Logical shift left, 1 bit

sl4 Rj, Ri Logical shift left, 4 bits

rr1 Rj, Rk, Ri Rotate right, 1 bit, Rk contains the incoming bits

rr4 Rj, Rk, Ri Rotate shift right, 4 bits, Rk contains the incoming bits

rl1 Rj, Rk, Ri Rotate shift left, 1 bit, Rk contains the incoming bits

rl4 Rj, Rk, Ri Rotate shift left, 4 bits, Rk contains the incoming bits

Both C flag and T flags are set if the out-coming bit of a 1-bit shift is 1. Cleared otherwise.

Condition Codes

Comparisons

Comparisons are performed with the 'cmp' and 'cpc' instructions. The comparison instructions take two operands and
a condition code to set the 'T' condition flag if the condition was matched after comparing the two operands. The
processor supports both signed and unsigned comparisons. Wider than word comparisons can be carried out with the
carry-in comparison instructions. A 32 bit comparison can be performed on two pairs of operands representing 32 bit
values, by sequentially executing 'cmp' on the lower operand pair followed by a 'cpc' on the upper pair. The condition
flags after a 'cpc' preceded by a 'cmp' are guaranteed to be correct for the 32 bit comparison.

The following comparison instructions are available:

Example 1:

Compare the 32 bit register pair R0:R1 with R2:R3 for equality.

cmp.eq r0, r2 // compare r0 with r2 for equality, these are the less significative pair
cpc.eq r1, r3 // compare r1 with r3 for equality with consideration of the previous result flags.

Example 2:

Compare the 32 bit memory contents pointed to by register A0, with memory contents pointed to by register A1

mov [a0, 0], r0 // load lower memory contents into registers
mov [a1, 0], r1
cmp.eq r0, r1 // compare (set flags)
mov [a0, 1], r0 // load high memory contents into registers
mov [a1, 1], r1
cpc.eq r0, r1 // compare high memory pair

Encoding
Machine
Name Alt Names SR Flags Description

000 eq z Z Equal than. Zero

001 ne nz !Z Not equal. Not zero

010 uge hs, c C Unsigned greater than or equal. Carry

011 ult lo, nc !C Unsigned less than. Not carry

100 ge - S == V Signed greater than or equal

101 lt - S != V Signed less than

110 ule ls !C || Z Unsigned less than or equal

111 le - (S != V) || Z
Signed less than or equal

- ugt hi C && !Z Unsigned greater than
Implemented as the opposite of ule

- gt - (S == V) && !Z Signed greater than
Implemented as the opposite of le

The S and V flags are computed internally to match condition codes, but they are not stored in the status
register, or are available to the user.

cmp.cc Rj, Rk
cmp.eq [M], Ri
cmp.eq [Aj, K], Ri

Compare the two operands by subtracting them and set 'T' flag according to the
given 'cc' condition code (1) and comparison result.

cpc.cc Rj, Rk
cpc.eq [M], Ri
cpc.eq [Aj, K], Ri

Compare operands as above but take into account previous 'C' and 'Z' flags to
appropriately set the 'T' flag.

(1) Only 'eq' is allowed for M-Type and ZP-Type instructions.

Conditional moves

A number of instructions enable conditional execution based on the 'T' condition flag. The following conditional
instructions are available:

Faster execution by prevention of branching code can be achieved in simple cases by conditional moves. For example,
the 'booth' multiplication algorithm requires an 'add' instruction to be skipped based on the multiplicand term. This can
be implemented by placing a 'set' instruction conditionally reseting a temporary value before the addition is executed.

Branches

Branch instructions are encoded as I-Type instructions except that the register operand is the PC:

The 'brl' instruction provides a way to implement subroutine calls. The instruction is a normal absolute branch, but it will
copy the PC to register R6 (or A3) before executing the branch. This enables the callee to return to the caller address by
simply executing 'mov r6, PC'. Stack based call frames are not natively supported but can be implemented explicitly
by letting the callee store the return address to the stack.

mov Rj, Ri copy Rj to Ri, unconditional {Ri = Rj}

set Rj, Ri If 'T is set, copy Rj to Ri, else set Ri to 0. {Ri = (T ? Rj : 0)}

sef Rk, Ri If 'T is not set, copy Rk to Ri, else set Ri to 0. {Ri = (T ? 0 : Rk)}

sel Rj, Rk, Ri If 'T is set, copy Rk to Ri, else copy Rj to Ri. {Ri = (T ? Rj : Rk)}

The same rules apply for M-Type and ZP-Type instructions except that Rj is the same as the destination
operand, and Rk is replaced by the corresponding memory addressing mode.

b Label Absolute Branch, unconditional

bt Label Absolute branch, if 'T' flag is set

b+ Label PC relative branch forward, unconditional

bt+ Label PC relative branch forward, if 'T' flag is set

bf+ Label PC relative branch forward, if 'T' flag is not set

b- Label PC relative branch backward, unconditional

bt- Label PC relative branch backward, if 'T' flag is set

bf- Label PC relative branch backward, if 'T' flag is not set

brl Label Absolute branch and link

