
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2295884

How to Read Floating Point Numbers Accurately

Article  in  ACM SIGPLAN Notices · September 1999

DOI: 10.1145/989393.989430 · Source: CiteSeer

CITATIONS

42
READS

1,487

1 author:

Some of the authors of this publication are also working on these related projects:

Larceny Scheme View project

William D. Clinger

Northeastern University

57 PUBLICATIONS   2,091 CITATIONS   

SEE PROFILE

All content following this page was uploaded by William D. Clinger on 01 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2295884_How_to_Read_Floating_Point_Numbers_Accurately?enrichId=rgreq-b058e09086f6854e58813c9acba6282c-XXX&enrichSource=Y292ZXJQYWdlOzIyOTU4ODQ7QVM6OTkxNzQ0NDgxMDc1NThAMTQwMDY1NjQ0MDk2NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2295884_How_to_Read_Floating_Point_Numbers_Accurately?enrichId=rgreq-b058e09086f6854e58813c9acba6282c-XXX&enrichSource=Y292ZXJQYWdlOzIyOTU4ODQ7QVM6OTkxNzQ0NDgxMDc1NThAMTQwMDY1NjQ0MDk2NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Larceny-Scheme?enrichId=rgreq-b058e09086f6854e58813c9acba6282c-XXX&enrichSource=Y292ZXJQYWdlOzIyOTU4ODQ7QVM6OTkxNzQ0NDgxMDc1NThAMTQwMDY1NjQ0MDk2NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b058e09086f6854e58813c9acba6282c-XXX&enrichSource=Y292ZXJQYWdlOzIyOTU4ODQ7QVM6OTkxNzQ0NDgxMDc1NThAMTQwMDY1NjQ0MDk2NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Clinger?enrichId=rgreq-b058e09086f6854e58813c9acba6282c-XXX&enrichSource=Y292ZXJQYWdlOzIyOTU4ODQ7QVM6OTkxNzQ0NDgxMDc1NThAMTQwMDY1NjQ0MDk2NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Clinger?enrichId=rgreq-b058e09086f6854e58813c9acba6282c-XXX&enrichSource=Y292ZXJQYWdlOzIyOTU4ODQ7QVM6OTkxNzQ0NDgxMDc1NThAMTQwMDY1NjQ0MDk2NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Northeastern_University?enrichId=rgreq-b058e09086f6854e58813c9acba6282c-XXX&enrichSource=Y292ZXJQYWdlOzIyOTU4ODQ7QVM6OTkxNzQ0NDgxMDc1NThAMTQwMDY1NjQ0MDk2NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Clinger?enrichId=rgreq-b058e09086f6854e58813c9acba6282c-XXX&enrichSource=Y292ZXJQYWdlOzIyOTU4ODQ7QVM6OTkxNzQ0NDgxMDc1NThAMTQwMDY1NjQ0MDk2NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Clinger?enrichId=rgreq-b058e09086f6854e58813c9acba6282c-XXX&enrichSource=Y292ZXJQYWdlOzIyOTU4ODQ7QVM6OTkxNzQ0NDgxMDc1NThAMTQwMDY1NjQ0MDk2NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


How to Read Floating Point Numbers AccuratelyWilliam D ClingerUniversity of Oregon
ABSTRACTConsider the problem of converting decimal scienti�c no-tation for a number into the best binary 
oating point ap-proximation to that number, for some �xed precision. Thisproblem cannot be solved using arithmetic of any �xed pre-cision. Hence the IEEE Standard for Binary Floating-PointArithmetic does not require the result of such a conversionto be the best approximation.This paper presents an e�cient algorithm that always�nds the best approximation. The algorithm uses a fewextra bits of precision to compute an IEEE-conforming ap-proximation while testing an intermediate result to deter-mine whether the approximation could be other than thebest. If the approximation might not be the best, then thebest approximation is determined by a few simple opera-tions on multiple-precision integers, where the precision isdetermined by the input. When using 64 bits of precision tocompute IEEE double precision results, the algorithm avoidshigher-precision arithmetic over 99% of the time.The input problem considered by this paper is the inverseof an output problem considered by Steele andWhite: Givena binary 
oating point number, print a correctly roundeddecimal representation of it using the smallest number ofdigits that will allow the number to be read without loss ofaccuracy. The Steele and White algorithm assumes that theinput problem is solved; an imperfect solution to the inputproblem, as allowed by the IEEE standard and ubiquitousin current practice, defeats the purpose of their algorithm.1. INTRODUCTIONIt seems reasonable to assume that a 
oating point con-stant appearing in code or data, when read by a compiler ora standard input routine, will be converted into the 
oatingpoint number that best approximates the constant. Mostprogramming languages do not require this, however, nordoes the IEEE Standard for Binary Floating-Point Arith-metic [IEEE85].Standard practice is to settle for an easily computed ap-proximation that is close but not necessarily closest [Coo-nen80]. For example, the IEEE standard speci�es that theerror introduced when converting from a decimal externalrepresentation to either the single or double precision inter-nal representation, using round to nearest, shall be no morethan .97 units in the least signi�cant bit of the result. Forthe best approximation, the error is at most .5 units.Steele and White have considered the problem of print-ing a 
oating point number using the fewest digits that will

allow the number to be read back without loss of accuracy[Steele90]. Their algorithm assumes the input routine willalways �nd the best approximation, and does not work with-out this assumption. In particular, their algorithm does notwork under the weaker assumption of an IEEE-conforminginput routine.The problem considered here is the input problem: Givendecimal scienti�c notation for a number, compute the bestbinary 
oating point approximation to the given number.This di�ers from the output problem considered by Steeleand White because the internal representation of 
oatingpoint numbers has �xed precision and is quantized, but theexternal representation has variable precision and is densein the space of real numbers. This asymmetry makes theinput and output problems very di�erent.As shown in Section 4, the input problem cannot besolved using �xed precision arithmetic. Subsequent sectionsdevelop a practical algorithm for this problem. The al-gorithm must occasionally work with very large precisions,but usually �nds the best approximation through a 
oatingpoint computation whose precision is a few bits greater thanthe precision required of the result.The key idea is this. Consider the problem of comput-ing the value of some function g, rounded to the nearest10000, given an oracle that delivers the value of g roundedto the nearest 10. Given an input x, the obvious approachis to ask the oracle for the value of g (x) to the nearest 10,and then to round that result to the nearest 10000. Un-fortunately, this does not always work. If g (x) is 11074996and g (y) is 11075004, for example, then the answers shouldbe 11070000 and 11080000, respectively, but the oracle willdeliver 11075000 for both x and y. This approach usuallyworks, though. It fails only when the value delivered by theoracle ends in 5000.To �nd the best approximation, the algorithm of thispaper uses an extended precision to compute an approxima-tion whose accuracy is signi�cantly better than the accuracyrequired in the result. It then examines the low order bits ofthat intermediate result to bound the additional error thatwill be introduced when this particular value is rounded tothe precision required of the �nal result. If the sum of thebounds for the intermediate approximation error and for therounding error is less than the error allowed in the �nal re-sult, then the rounded value must be correct. Otherwise therounded value must be checked using arithmetic of greaterprecision.By choosing a large enough extended precision, the prob-ability that an even greater precision will be needed can bemade as small as desired. For IEEE double precision num-bers, an experiment reported in Section 9 found that IEEEextended precision is enough to �nd the best approximationover 99% of the time.2. EXTERNAL AND INTERNAL RADIXESFor concreteness it is often appropriate to assume thatthe input is given in decimal scienti�c notation and that theoutput is a binary 
oating point number, but most resultspresented here hold for more general radixes. Let � � 2 bethe radix used to express the input, and let � � 2 be theradix of the 
oating point output. � is the external radix,and � is the internal radix. In practice � is usually 10 and� is usually 2 or 16.De�nition 1. [Matula70] Radixes � and � are commen-surable if and only if both are integral powers of a common



integral root. Equivalently, � and � are commensurable i�log� � is rational.For example, 2 and 16 are commensurable radixes, as are8 and 16. On the other hand 10 and 2 are incommensur-able, as are 10 and 16. As shown in Section 4, the problemof computing the best 
oating point approximation is trivialif � and � are commensurable radixes. Most of this papertherefore assumes that � and � are incommensurable, andfor simplicity the internal radix � is always assumed to beeven.For convenience \bit" will be used to refer to digits inthe internal radix �, and \digit" will be used for digits inthe external radix �.3. FLOATING POINT NUMBERSThis paper deals exclusively with positive 
oating pointnumbers. Over
ow and under
ow are considered only inSection 8. Because the following de�nition refers to precisionand not to a data structure, this paper considers an IEEEsingle precision number to be a 24-bit 
oating point numberand an IEEE double to be a 53-bit 
oating point number.Let n, the precision in bits of a 
oating point number, bea positive integer. For the purposes of this paper, an n-bit
oating point number consists of an integer signi�cand mand an integer exponent q with 0 < m < �n, representingthe value m� �q . A 
oating point number is normalized i��n�1 � m < �n. For a �xed precision n, the signi�cand mand exponent q of a normalized 
oating point number areuniquely determined by its value m� �q.For any �xed precision n, a closest 
oating point approx-imation to a real number a is a normalized 
oating pointnumber m� �q such that a = (m+ �)� �q where j�j � 1=2,and where m = �n�1 only if �1=(2�) � �. The closestapproximation is uniquely determined unless j�j = 1=2, orm = �n�1 and � = �1=(2�), in which cases there are twoclosest approximations. The best approximation is a closestapproximation where, in a case of two closest approxima-tions, the tie is broken by a �xed rounding rule such asround to even.For any real number a, the fractional part of a is de�nedto be fag = a� bac. The value of a rounded to the nearestinteger, assuming ties round to even, is de�ned to be[a] =8><>: bac if fag < 1=2dae if fag > 1=2bac if fag = 1=2 and bac is evendae if fag = 1=2 and bac is oddThis de�nition can easily be changed to accomodate othertie-breaking rules, but the algorithms presented later willassume that ties round to even. The signi�cand of the bestn-bit approximation to a is��n�1�flog� ag�unless this value is �n, in which case the signi�cand is �n�1.The 
oating point product of normalized 
oating pointnumbers x � �q and y � �r is a best approximation toxy � �q+r. That is, the 
oating point multiplication op-erator is assumed to be reliably accurate, to round to near-est, and to resolve ties that result when the mathematicalproduct is exactly halfway between two adjacent 
oatingpoint numbers by the same rounding rule used to de�ne thebest approximation. These assumptions hold for the de-fault rounding mode in IEEE arithmetic, but do not holdfor many other implementations of 
oating point numbers.

The loss of accuracy that results from approximating areal number by a 
oating point number is likely to be am-pli�ed by subsequent multiplications. The following lemmatightly bounds this loss of accuracy.Lemma 2. Ifa = (x+ �1)� �q j�1j � �1 �p�1 � x < �pb = (y + �2)� �r j�2j � �2 �p�1 � y < �pxy � �q+r = (z + �3)� �s j�3j � 12 �p�1 � z < �pwhere x, y, z, q, r, s are integers, thenab = (z + �)� �swherej�j � 12 + � (�1 + �2) + (�1�2 � �1 � �2)� ��p+1:Proof:ab = (x+ �1)� �q � (y + �2)� �r= xy � �q+r + (�1y + �2x+ �1�2)� �q+r= (z + �3)� �s + (�1y + �2x+ �1�2)� �q+rCase 1: s = p+ q + r. Thenab = (z + �3)� �p+q+r + (�1y + �2x+ �1�2)� �q+r= (z + �3 + �1y � ��p + �2x� ��p + �1�2 � ��p)� �sso j�j = j�3 + �1y � ��p + �2x� ��p + �1�2 � ��pj� 12 + �1 � (�p � 1)� ��p+�2 � (�p � 1)� ��p + �1�2 � ��p= 12 + �1 + �2 + (�1�2 � �1 � �2)� ��pCase 2: s = p+ q + r � 1. Thenab = (z + �3)� �p+q+r�1 + (�1y + �2x+ �1�2)� �q+r= (z + �3 + �1y � ��p+1+�2x� ��p+1 + �1�2 � ��p+1)� �ssoj�j = j�3 + �1y � ��p+1 + �2x� ��p+1 + �1�2 � ��p+1j� 12 + �1 � (�p � 1)� ��p+1+ �2 � (�p � 1)� ��p+1 + �1�2 � ��p+1= 12 + � � (�1 + �2) + (�1�2 � �1 � �2)� ��p+1Corollary 3. If, in addition, 0 < �1 + �2 < 4 or �1 < 1or �2 < 1, then j�j < 12 + � (�1 + �2):Proof: If �1 < 1 then �1�2��1��2 = (�1�1) �2��1 < 0.If �1+�2 < 4 then consider f (x; y) = xy�x�y restrictedto A = fhx; yi j 0 � x&0 � y&x+ y � 4g:@f@x = y � 1 @f@y = x� 1



but f (1; 1) = �1 is a saddle point, not a maximum. Themaximum of f on A therefore occurs on the boundary of A,and f (x; y) is strictly less than the maximum if hx; yi is inthe interior of A. Let g (x) = f (x; 4� x).f (0; y) = �y � 0f (x; 0) = �x � 0g (x) = f (x; 4� x) = �x2 + 4x� 4dg=dx = �2x + 4 so the maximum of g occurs at x = 0,x = 2, or x = 4. g (0) = g (4) = �4 and g (2) = 0 so f isnegative on the interior of A.4. UNLIMITED PRECISION IS NEEDEDThe problem of �nding the best n-bit binary 
oatingpoint approximation to a number written in decimal scien-ti�c notation is equivalent to the problem of �nding the bestn-bit approximation to f � 10e, where f and e are integersand f is positive.What would it mean to say that this problem can orcannot be solved using arithmetic of �nite precision? Al-gorithms that use �nite precision 
oating point arithmeticdo not simply correspond to �nite automata, because thede�nition of a 
oating point number limits the precision ofthe signi�cand but does not limit the range of the exponent.Limiting the range of the 
oating point exponent would re-duce the problem to table lookup, as shown in Section 8,but the table is so large that this is of greater theoreticalthan practical interest. The approach taken here is to iden-tify �nite precision with �nite automata, but to allow theautomata to compute only the signi�cand of the best ap-proximation. The intuitive justi�cation for this is that thesigni�cand of a 
oating point product is entirely determinedby the signi�cands of the factors, so the exponents of thefactors should not matter.Theorem 4. [Matula68] If � and � are commensurable,then there exists a �nite automaton that computes the sig-ni�cand of the best n-bit 
oating point approximation tof ��e.Proof: Let �, u, and v be integers with � = �u and� = �v. The automaton constructs the (normalized) leadingnv+1 �-ary digits of f , together with a sticky bit that tellswhether any of the remaining �-ary digits of f are nonzero.The automaton also counts the number of digits of f modulov, and adds ue to this count modulo v. It then shifts rightby as many digits as are called for by (the additive inversemodulo v of) this count, rounds to nv digits using the guarddigit and sticky bit, and performs the trivial conversion fromnv �-ary digits to n �-ary digits.Theorem 5. For n � 4, no �nite automaton computesthe signi�cand of the best n-bit binary 
oating point ap-proximation to f �10e, where f and e are presented in base10.Proof: This is a special case of the lemmas below.Lemma 6. If x and y are positive real numbers with12�n�1 log � < �log� x� log� y	 < 1� 12�n�1 log �then the best n-bit 
oating point approximations to x andy have distinct signi�cands.Proof: By symmetry suppose flog� xg < flog� yg. Letw = flog� xg and w + � = flog� yg. Then�w+� � �w = �w(�� � 1)

� �� � 1> � log �> 12�n�1so ��[�n�1�w+�]� [�n�1�w]�� > 12 :Lemma 7. (Kronecker's Theorem in one dimension) If� is irrational, then f fn�g j n 2 !g is dense in the interval(0; 1).Proof: See [HW60].Lemma 8. If � and � are incommensurable, � � 3or n � 2, and e is presented with its least signi�cant digit�rst, then no �nite automaton computes the signi�cand ofthe best n-bit approximation to �e.Proof: Suppose e is presented in radix 
, and let D bea DFA. Let i and j be integers such that D is in the samestate after reading i+ j zeroes as after reading i zeroes. ByKronecker's theorem there exists an integer k such that12�n�1 log � < �k (
i+j � 
i) log� �	 < 1� 12�n�1 log � :Take e1 = k
i+j and e2 = k
i. D computes the same resultfor �e1 as for �e2 , but their signi�cands are distinct byLemma 6.Lemma 9. If � is irrational and 
 > 1 is an integer,then there exist in�nitely many nonnegative integers k suchthat 
 � 1
2 < �
k�	 < 
2 � 
 + 1
2 :Proof: If all digits to the right of the radix point in the
-ary representation of � are zero or 
�1, then let k be suchthat the kth digit to the right of the radix point is 
�1 andthe following digit is zero. Otherwise let k be such that thekth digit is neither zero nor 
 � 1.Since 
k� is also irrational, a larger such k always exists.Lemma 10. If � and � are incommensurable, e is pre-sented in base 
 with its most signi�cant digit �rst, and
2=(
 � 1) < 2�n�1 log �, then no �nite automaton com-putes the signi�cand of the best n-bit approximation to �e.Proof: Let D be a DFA, and let i and j be integerssuch that D is in the same state after reading 
i+j as afterreading 
i. By Lemma 9 there exists an integer k such that
 � 1
2 < �
k (
i+j � 
i) log� �	 < 
2 � 
 + 1
2so take e1 = 
i+j+k and e2 = 
i+k.The lemma above is unpleasantly technical, for there isno apparent reason why the base in which the inputs arepresented should a�ect the di�culty of the problem. Thelemma probably holds without such assumptions, but a moresophisticated proof will be required.Figure 1 shows a straightforward algorithm, AlgorithmM,that uses integer arithmetic of unlimited precision to com-pute the best n-bit 
oating point approximation to f ��e.As written, the algorithm assumes ties are broken by round-ing to even.Like the other algorithms in this paper, AlgorithmM isexpressed as a purely functional Scheme program, with the



; Given exact integers f and e, with f nonnegative,; returns the floating point number closest to; f * delta^e.(define (AlgorithmM f e); f * delta^e = u/v * beta^k(define (loop u v k)(let ((x (quotient u v)))(cond ((and (<= beta^n-1 x) (< x beta^n))(ratio->float u v k))((< x beta^n-1)(loop (* beta u) v (- k 1)))((<= beta^n x)(loop u (* beta v) (+ k 1))))))(if (negative? e)(loop f (expt 10 (- e)) 0)(loop (* f (expt 10 e)) 1 0))); Given exact positive integers u and v with; beta^(n-1) <= u/v < beta^n, and exact integer k,; returns the float closest to u/v * beta^k.(define (ratio->float u v k)(let* ((q (quotient u v))(r (- u (* q v)))(v-r (- v r))(z (make-float q k)))(cond ((< r v-r) z)((> r v-r) (nextfloat z))((even? q) z)(else (nextfloat z)))))(define delta 10)(define beta 2)(define n 53)(define beta^n (expt beta n))(define beta^n-1 (expt beta (- n 1)))Figure 1. AlgorithmM.assumption that all integer arithmetic is exact, i.e. of unlim-ited precision [Rees86]. For integers m and k with �n�1 �m < �n, (make-float m k) is assumed to return the n-bit 
oating point number m � �k. The nextfloat proce-dure, shown in Figure 2, returns the least normalized 
oat-ing point number greater than its argument.For most applications AlgorithmM is impractical becauseit uses too much high-precision arithmetic. The next sectionobtains a better algorithm by starting from a close but notnecessarily closest approximation.5. AN ITERATIVE ALGORITHMIt is quite easy, using a few extra bits of precision, to �ndan approximation that di�ers from the best approximationby only a few units in the last place of the signi�cand. Infact, it is fairly easy to �nd an n-bit approximation thatdi�ers from the best approximation by no more than oneunit.AlgorithmR, in Figure 3, takes a good approximation

; Given a normalized floating point number; z = m * beta^k, returns the normalized floating; point number whose value is (m+1) * beta^k.(define (nextfloat z)(let ((m (float-significand z))(k (float-exponent z)))(if (= m (- beta^n 1))(make-float beta^n-1 (+ k 1))(make-float (+ m 1) k)))); Given a normalized floating point number; z = m * beta^k, returns the greatest normalized; floating point number less than z. Note that the; value returned may be greater than (m-1) * beta^k.(define (prevfloat z)(let ((m (float-significand z))(k (float-exponent z)))(if (= m beta^n-1)(make-float (- beta^n 1) (- k 1))(make-float (- m 1) k))))Figure 2. Nextfloat and prevfloat.m� �k and checks it using integer arithmetic of unlimitedprecision. If the given approximation is too small or toolarge, it then repeats the process with the next larger orsmaller 
oating point number.The algorithm begins by �nding positive integers x andy such that xy = f ��em� �k :The purpose of this is to eliminate any further dispatchingon the signs of e and k, but the choice of x and y mayalso take advantage of any common factors possessed by �and � so as to reduce the size of the integers that will bemanipulated.Let � be the error such that f��e = (m+�)��k. Thenx=y = (m+ �)=m so � = m (x� y)y :The algorithm proceeds by comparing j�j to 1=2, taking careto avoid division.AlgorithmR can be criticized for its unimaginably slowconvergence when given a poor starting approximation, andfor the fact that it performs several expensive but loop-invariant computations on each iteration. When AlgorithmRis incorporated into an e�cient algorithm, however, the start-ing approximation will always be either the best approxima-tion or one of the two 
oating point numbers adjacent to thebest approximation.For such a starting approximation, the tail-recursive callsto loop from within the compare procedure can be replacedby their arguments, (prevfloat z) and (nextfloat z). Somodi�ed, the algorithm always executes the body of the loopexactly once.6. FIXED PRECISION COMES CLOSE



; Given exact integers f and e, with f positive,; and a floating point number z0 close to f * delta^e,; returns the best floating point approximation to; f * delta^e.(define (AlgorithmR f e z0)(define (loop z)(define m (float-significand z))(define k (float-exponent z)); Given exact positive integers x and y with; x/y = (f*delta^e)/(m*beta^k), returns the best; approximation to f*delta^e.(define (compare x y)(let* ((D (- x y))(D2 (* 2 m (abs D))))(cond ((< D2 y)(if (and (= m beta^n-1)(negative? D)(> (* beta D2) y))(loop (prevfloat z))z))((= D2 y)(cond ((even? m)(if (and (= m beta^n-1)(negative? D))(loop (prevfloat z))z))((negative? D)(prevfloat z))((positive? D)(nextfloat z))))((negative? D)(loop (prevfloat z)))((positive? D)(loop (nextfloat z))))))(cond ((and (>= e 0) (>= k 0))(compare (* f (expt delta e))(* m (expt beta k))))((and (>= e 0) (< k 0))(compare (* f (expt delta e)(expt beta (- k)))m))((and (< e 0) (>= k 0))(compare f (* m (expt beta k)(expt delta (- e)))))((and (< e 0) (< k 0))(compare (* f (expt beta (- k)))(* m (expt delta (- e)))))))(loop z0))(define beta^n+1 (expt beta (+ n 1)))Figure 3. AlgorithmR.

To prevent the numerical analysis from becoming tooabstract, this section and the next assume that � = 2. Theresults of these two sections can be applied to other eveninternal radixes by repeating the numerical analysis.Let p � n + 4 be a convenient extended precision. Anexcellent starting approximation for AlgorithmR can be ob-tained by �nding reasonably close p-bit 
oating point ap-proximations to f and to �e and multiplying them. Thisis hardly an e�cient solution, because AlgorithmR involvesinteger arithmetic of unlimited precision, but the results ofSection 4 say there will be times when such arithmetic can-not be avoided.A closest p-bit approximation to f can be computed quiteeasily. While f itself may be a large integer requiring mul-tiple precision, f is likely to be representable in n + 7 bitsbecause the number of decimal digits needed to specify anyn-bit binary 
oating point number is the least d such that10d�1 > 2n [Goldberg67] whencedlog210de � n+ 7:A close approximation to �e is expensive to computewhen the absolute value of e is large. The most practical so-lution seems to be a pre-computed table of powers of �, con-taining the range of powers that is apt to occur in practice.With practical 
oating point formats the range of 
oatingpoint exponents is usually limited, so very large exponentswill over
ow and very small exponents will under
ow un-less the number of digits in the input is unreasonably large.AlgorithmM can be used when the input exponent is out ofthe table's range.Even when limited to the range needed for reasonableinputs, the table of powers may be fairly large. The size ofthe table can be reduced, at the expense of accuracy, by fac-toring it into two smaller tables. One table contains valuesfor small powers of �e, with 0 � e < h, while another tablecontains approximations to 10hj for integral j. It is conve-nient to assume that h is small enough that the small powersare represented exactly as p-bit 
oating point numbers. Ifthis is so, and all other table entries are best approxima-tions, and � = 2, then Corollary 3 says that the error in thevalue calculated for �e is strictly less than 32 units in theleast signi�cant bit.If the 
oating point approximation to f is the best pos-sible, and the approximation to �e is within 32 units, and� = 2, then the error in the product is less than 92 units. Ifthis calculation is performed using p � n + 4 bits of preci-sion, then rounding the product to the nearest n bits yieldseither the best n-bit binary 
oating point approximation tof ��e or a next-best approximation.7. AN EFFICIENT, NON-ITERATIVE ALGORITHMAlgorithm Bellerophon, shown in Figure 4 for the spe-cial case of � = 10 and � = 2, is a practical algorithm basedon the idea explained in the introduction. The terms usedin Figure 4 di�er from those used to describe previous algo-rithms, in that \
oat" refers to p-bit 
oating point numbersand \short
oat" refers to n-bit numbers.Given integers f and e, Bellerophon dispatches on theerror introduced when f and �e are approximated by 
oat-ing point numbers with p bits of precision, where p is largeenough to ensure that the product of the approximations,rounded to n bits, is either the best or a next-best approxi-mation to f ��e.



; Given exact integers f and e with f > 0,; return the float with n bits of precision that best approximates it.; Tries to do the calculation using floats with p bits of precision.; The error bounds used here assume perfect floating point arithmetic,; as in the IEEE standard. They are independent of p and n.(define (Bellerophon f e)(cond ((and (< f two^n) (>= e 0) (< e h) (< e log5-of-two^n))(shortfloat-multiply (int->shortfloat f)(float->shortfloat (ten-to-e e))))((and (< f two^n) (< e 0) (< (- e) h) (< (- e) log5-of-two^n))(shortfloat-divide (int->shortfloat f)(float->shortfloat (ten-to-e (- e)))))((and (< f two^p) (>= e 0) (< e h))(multiply-and-test f e 0))((and (< f two^p) (or (< e 0) (>= e h)))(multiply-and-test f e 3))((and (>= f two^p) (>= e 0) (< e h))(multiply-and-test f e 1))((and (>= f two^p) (or (< e 0) (>= e h)))(multiply-and-test f e 4)))); Slop, expressed in units of the least significant bit, is an; inclusive bound for the error accumulated during the floating; point calculation of an approximation to f * 10^e. (Slop is; not a bound for the true error, but bounds the difference; between the approximation z and the best possible approximation; that uses p bits of significand.);; Fail is a slow but perfect backup algorithm.; Z is passed so fail can use it as a starting approximation.(define (multiply-and-test f e slop)(let ((x (int->float f))(y (ten-to-e e)))(let ((z (float-multiply x y)))(let ((lowbits (remainder (float-significand z) two^p-n))); is the slop large enough to make a difference when; rounding to n bits?(if (<= (abs (- lowbits two^p-n-1)) slop)(fail f e z)(float->shortfloat z))))))(define (fail f e z)(AlgorithmR f e (float->shortfloat z)))(define n 53) ; IEEE double(define p 64) ; an extended precision(define two^p (expt 2 p))(define two^p-1 (expt 2 (- p 1)))(define two^p-n (expt 2 (- p n)))(define two^p-n-1 (expt 2 (- p n 1)))(define two^n (expt 2 n))(define two^n-1 (expt 2 (- n 1)))(define log5-of-two^n(inexact->exact (ceiling (/ (log two^n) (log 5)))))Figure 4. Algorithm Bellerophon.



If f and �e can both be represented exactly using n bits,then an n-bit 
oating point multiplication yields the bestapproximation to their product. If f and ��e can bothbe represented exactly using n bits, then an n-bit divisionyields the best approximation. (This assumes that 
oatingpoint division, like multiplication, is reliably accurate.)Otherwise Bellerophon approximates f and �e by p-bit
oating point numbers x and y, and computes their 
oatingpoint product z = m� �q, where �p�1 � m < �p. Hencef ��e = (z + �)� �qwhere for � = 2 the error � is bounded by the values shownin Figure 5.Unless z lies about halfway between two adjacent n-bit
oating point numbers, the error � will be absorbed whenz is rounded to n bits. The multiply-and-test proceduretherefore tests to see if z could be within � of the midpoint.If not, then the correct answer is obtained by rounding z to nbits. Otherwise the e�cient part of the algorithm fails, andthe rounded value of z is passed to AlgorithmR as a startingapproximation. Since the rounded value of z is always eitherthe best or a next-best approximation, AlgorithmR alwaysconverges in one loop.Theorem 11. Algorithm Bellerophon computes thebest n-bit approximation to f ��e.Proof: This proof deals with the generalizations of Fig-ures 4 and 5 to any even internal radix �. In general, Algo-rithm Bellerophon computes a p-bit 
oating point numberz = m� �k such that f ��e = (z + �)� �k andj�j � slop+ 12where the value of slop is determined by numerical analysis.Let z1 and z0 be integers such thatz = z1 � �p�n + z0�n�1 � z1 < �n0 � z0 < �p�nThere are three cases, depending on whether z0 is well below,well above, or near 12�p�n.Case 1: z0+ slop < 12�p�n. Rounding z to n bits yieldsz1 � �k+p�n, and f � �e = (z1 + �0) � �k+p�n where theerror �0 is j�0j = ���� f ��e�k+p�n � z1����= ���� (z + �)� �k�k+p�n � z1����= ����z0 + ��p�n ����� �n�p(z0 + j�j)� �n�p(z0 + slop+ 12)< �n�p � 12�p�n= 12

Case 2: 12�p�n < z0� slop. Rounding z to n bits yields(z1+1)��k+p�n, and f��e = (z1+1+�0)��k+p�n wherej�0j = ���� (z + �)� �k�k+p�n � z1 � 1����= ����z0 + ��p�n � 1����� �n�p(�p�n � z0 + j�j)� �n�p(�p�n � z0 + slop+ 12)< �n�p � (�p�n � 12�p�n)= 12Case 3: 12�p�n� slop � z0 � 12�p�n+ slop. This is thefailure case in which another algorithm is used.8. OVERFLOW AND UNDERFLOWOver
ow and under
ow become possible when the rangeof 
oating point exponents is restricted. Algorithm Bellerophoncan be modi�ed to deal with over
ow and under
ow by test-ing the n-bit result to see if it is an in�nity, the largestrepresentable 
oating point number, the smallest normal-ized 
oating point number, denormalized, or zero. In suchcases the computation may need to be repeated using someother algorithm, depending on the policies that have beenestablished for handling over
ow and under
ow within theparticular 
oating point number system in question.With IEEE arithmetic, for example, a denormalized re-sult may be required. Denormalized results can be generatedby a modi�ed form of AlgorithmM that terminates immedi-ately when the minimum exponent is reached.When exponents are bounded, the input problem can besolved by table lookup:Theorem 12. If 
oating point exponents are bounded,then there exists a �nite automaton that takes f and e asinputs and computes the signi�cand of f ��e�d (f), whered (f) = blog� fc.Proof: There are only a �nite number of 
oating pointnumbers and only a �nite number of inputs e such that, forsome f , f ��e�d (f) does not over
ow or under
ow.The automaton contains a table indexed by e. For eache, the entry for e is an enormous table containing an entryfor every 
oating point number that can result from thatvalue of e. The entries in this subtable are indexed by rep-resentations of the numbers that lie exactly halfway betweentwo 
oating point numbers. These midpoints are expressedas sequences of input digits, so they might not always beexpressible as �nite sequences, but they are rational so theycan be encoded as sub-automata. (If � = 6 and f = ��1 isexpressed in base 10, for example, then f is a repeating butnot a terminating decimal fraction.) Associated with eachmidpoint are the 
oating point numbers that it separates,together with an indication of how ties should be brokenwhen f is equal to the midpoint.The automaton reads e �rst and uses it as an index intothe table. Then it reads f , �nds the midpoints that f liesbetween, and reads o� the answer.Corollary 13. If 
oating point exponents are bounded,then the best binary 
oating point approximation to f�10ecan be found by approximating f using dlog2 10n+1e bits ofprecision and performing an enormous table lookup.



j�xj j�yj j�jf < 2p ^ 0 � e < h 0 0 � 12f < 2p ^ (e < 0 _ e � h) 0 < 32 < 72f � 2p ^ 0 � e < h � 12 0 < 32f � 2p ^ (e < 0 _ e � h) � 12 < 32 < 92Figure 5. Error bounds in units of the least signi�cant bit.To convert decimal scienti�c notation to IEEE doubleprecision using the 180-bit precision implied by the corollary,the table used in the proof would have nearly 1020 entries,most of which would contain over 50 decimal digits. Thetable can be compressed by several orders of magnitude,but it is hard to believe that this approach can be madepractical.On the other hand the existence of such an algorithmimplies that, if Algorithm Bellerophon is in any sense opti-mal for practical 
oating point formats, then a proof of itsoptimality must be at least as di�cult as showing that thistable cannot be compressed by more than a few orders ofmagnitude.Instead of comparing Algorithm Bellerophon against allpossible algorithms, therefore, it makes sense to compare itagainst all algorithms that work by multiplying �-ary 
oat-ing point approximations to f and 10e, where the precisionof these approximations is a function of f and e. WhenAlgorithm Bellerophon fails and must resort to a less e�-cient algorithm, any other algorithm of this class that usesthe same error bounds available to Bellerophon must alsoresort to a higher precision, because Bellerophon makes op-timal use of the error bounds available to it. It is possibleto improve upon Bellerophon by using a more e�cient al-gorithm for the failure case, however.Instead of using AlgorithmR for the failure case, Algo-rithm Bellerophon may itself be used with a higher pre-cision, say twice the precision. This re�nement guaranteesthat the precision used is within a constant factor of thesmallest possible precision, at the cost of storing a table ofthe powers of � for each precision that might be used.9. EXPERIMENTAL RESULTSFor inputs generated by IEEE-conforming output rou-tines to the maximumoutput precisions speci�ed in [IEEE85],Algorithm Bellerophon never has to resort to the failurealgorithm provided p is at least as large as the extendedprecisions speci�ed by [Coonen80].Higher precision arithmetic may be needed to computethe best approximation to inputs generated by the algo-rithms in [Steele90], because minimizing the number of out-put digits inevitably increases the error in the printed values.This has the e�ect of moving those values closer to the mid-points between adjacent 
oating point numbers. Even so,Bellerophon is much less likely to fail on inputs generatedby the algorithms in [Steele90] than on uniformly distributedinputs.As a simple test of Bellerophon on more uniformly dis-tributed inputs, 64-bit IEEE extended precision arithmetic

was used to �nd the best IEEE double precision approxi-mation for over ten million sample inputs spanning a widerange of f and e. On these inputs, the algorithm avoidedhigher precision arithmetic over 99.6% of the time.In a classic example of local optimization leading to globalpessimization, I attempted to save an instruction or two bychoosing h = 16 as the size of the table of small powersof ten instead of using h = dlog5 253e = 23. As a result,the algorithm failed systematically for e = 18 and odd fbeginning with f = 2363, changing to every fourth f atf = 4726. Such systematic failures will occur for all nonneg-ative e < log5 2p as f becomes just large enough to shift therightmost nonzero bit of 10e into the bit �eld being tested byBellerophon. These systematic failures can be eliminatedby storing exact values of �e for all such e in the table ofsmall powers.Some compilers do not implement IEEE arithmetic cor-rectly. For example, the Motorola 68881/68882 
oatingpoint coprocessors perform extended precision IEEE arith-metic faster than double or single precision IEEE arithmetic.By default, therefore, some compilers that appear to supportIEEE single or double precision arithmetic may actually per-form single or double precision calculations using extendedprecision, rounding to single or double only when a resultis stored in a variable. Somewhat counterintuitively, thismakes individual 
oating point operations less accurate, anddoes not meet the error bounds required by the IEEE speci-�cation for the default rounding mode using single or doubleprecision arithmetic.Suppose, for example, that Algorithm Bellerophon isused to compute the best IEEE double precision approxi-mation to 1.448997445238699. The correct result is6525704354437805 � 2�52 := 1:448997445238699obtained by dividing 1448997445238699 by 1015 using dou-ble precision arithmetic. If this division is performed using64-bit extended precision arithmetic instead, and the ex-tended precision result rounded to double precision, thenthe incorrect result6525704354437806 � 2�52 := 1:4489974452386991will be obtained.10. RELATED WORKMathematical properties of the best approximation func-tion have been investigated by Matula, who does not con-sider algorithms for computing it [Matula68, 70].Theorem 4 strengthens an observation by Matula andothers [Matula68]. Calculations similar to Lemma 2 and



Corollary 3 appear in [Knuth81] and in most books on nu-merical analysis, though the results are seldom stated asthey appear here. Theorem 5 expresses well-known folklore,but to my knowledge this is the �rst proof of it.AlgorithmM is essentially the same as Method (2a) inSection 4.4 of [Knuth81]. The solution to Exercise 3 of thatsection contains a forward reference to [Steele90].A draft of [Clinger90] required the standard routine fornumerical output to print 
oating point numbers using thefewest digits that allow the number to be read back in with-out loss of accuracy. Although this can be done by extend-ing an IEEE-conforming but imperfect implementation, ref-erence was made to a draft of [Steele90], which assumes aperfect input routine.On 1 November 1989 Chris Hanson expressed concernover this requirement in electronic mail sent to Steele, White,and myself. Hanson described AlgorithmM but noted its in-e�ciency and asked whether any other perfect algorithms,especially perfect and e�cient algorithms, were published orknown. The matter was urgent because Hanson was editinga draft IEEE standard for Scheme to be voted on in Jan-uary. After checking with Steele to con�rm that he did notknow of an e�cient solution to the input problem, I set towork, keeping the others informed of my progress.Jon L White was out of town and unable to read hismail. On 10 November 1989, after I had announced thebasic idea of Algorithm Bellerophon, White reported thatLucid Common Lisp has for several years used a similaralgorithm of his invention. This algorithm has not beenpublished, and was known only to a handful of people atLucid. From subsequent telephone conversations, it appearsthat the algorithm in use at Lucid is essentially the same asBellerophon but uses twice as many bits, primarily becausethe error bounds were not calculated very tightly.Bellerophon is so named because it inverts the Dragon3and Dragon4 algorithms of [Steele90]. Unlike its namesake,the algorithm reads its fate and acts accordingly.ACKNOWLEDGEMENTSChris Hanson helped in many ways, and I am indebtedalso to David Wise, Jon L White, Guy L Steele Jr, and AnneHartheimer.REFERENCES[Clinger90] Clinger, William, and Jonathan Rees [editors].Revised4 report on the algorithmic language Scheme. Tech-nical Report CIS-TR-90-02, Department of Computer andInformation Science, University of Oregon, 1990.[Coonen80] Coonen, Jerome T. An implementation guideto a proposed standard for 
oating-point arithmetic. Com-puter 13, 1, January 1980, pages 68{79.[Goldberg67] Goldberg, I. B. 27 bits is not enough for 8-digit accuracy. CACM 10, 2, February 1967, pages 105{106.[HW60] Hardy, G. H., and E. M. Wright. An Introductionto the Theory of Numbers, Fourth Edition. Oxford Univer-sity Press, 1960.[IEEE85] IEEE Standard 754-1985. IEEE Standard forBinary Floating-Point Arithmetic. IEEE, New York, 1985.[Knuth81] Knuth, Donald E. The Art of Computer Pro-gramming, Second Edition, Volume 2, Seminumerical Algo-rithms. Addison-Wesley, 1981.[Matula68] Matula, DavidW. In-and-out conversions. CACM11, 1, January 1968, pages 47{50.

[Matula70] Matula, David W. A formalization of 
oating-point numeric base conversion. IEEE Transactions on Com-puters, C-19, 8, August 1970, pages 681{692.[Rees86] Rees, Jonathan, and William Clinger [editors].Revised3 report on the algorithmic language Scheme. ACMSIGPLAN Notices 21, 12, December 1986, pages 37{79.[Steele90] Steele Jr, Guy Lewis, and Jon L White. How toprint 
oating point numbers accurately. Proceedings of thisconference.

View publication stats

https://www.researchgate.net/publication/2295884

